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A simplified model of oscillating electrolytes

Unstable electrophoretic transport leading to oscillations in concentration profiles occur
in certain electrolyte systems known as oscillating electrolytes whose eigenmobilities are
complex valued. The study of the nonlinear behavior of such systems is of great interest
but is constrained due to a high degree of complexity in the governing equations. Here we
present a simplified model of unstable electrophoretic transport in a binary system that
reduces the governing equations to two partial differential equations only and does away
with other equations that characterize acid–base dissociation reactions and electroneutral-
ity. We present analytical expressions for electromigration fluxes and validate the model
with full nonlinear simulations. The model exhibits similar nonlinear behavior as the ac-
tual unstable electrophoretic system under various initial disturbances. For comparison,
we also show that similar modeling for a stable system predicts concentration profiles that
quantitatively agree with its nonoscillating dynamics. Moreover, the unique feature of elec-
tromigration flux in oscillating electrolytes that unfolds from the modeling led us to find
an elegant explanation of the instability mechanism. Our theory gives a qualitative under-
standing of the existence and growth of large oscillation patterns in oscillating electrolytes.
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1 Introduction

The differential migration speeds of ions in a supporting
medium due to the presence of an electric field give rise to
a number of interesting phenomena that are exploited in var-
ious electrophoretic techniques such as CZE, ITP, and field-
amplified sample stacking to achieve separation and precon-
centration of ionic species. The reason for exhibiting such
a wide variety of features is that the movement of ions in
an electrolyte solution in the presence of an electric field is
strongly coupled with the movement of other ions in the
medium. This happens because the migration speed of an
ion depends on the local electric field, which in turn is gov-
erned by the distribution of all other ions in the medium. Be-
sides, the ions are compelled to maintain a macroscopic elec-
troneutrality owing to strong Coulombic forces. Moreover, if
the constituents are weak acids and bases, they also undergo
rapid dissociation-recombination reactions.
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All electrophoretic transport phenomena can be viewed
as the propagation of concentration disturbances (waves).
The partial differential equations (PDEs) governing spa-
tiotemporal evolution of ionic species migrating due to the
presence of an electric field [1], being highly nonlinear, give
rise to nonlinear waves in general and phenomena like shock
and rarefaction waves are common [2,3]. However, under spe-
cial conditions where the disturbances are small, and their
effect on the local electric field is negligible, linear waves are
observed. For example, in CZE, when the analyte concentra-
tion is small in comparison to the BGEs, analytical solutions
of the linearized transport equations can be quite useful. Lin-
earization of the species transport equation yields a matrix
eigenvalue problem [4–6]. The eigenvalues of the Jacobian
matrix of flux vector are called eigenmobilities and have the
same dimension as electrophoretic mobility of ions. In the
case of CZE, where linearization is particularly applicable,
each eigenmobility characterizes a zone or disturbance that
travels at speed proportional to the corresponding eigenmo-
bility. The analytical solution of the linearized transport equa-
tion elegantly explains the appearance and movement of the
analyte peaks as well as system zones observed in CZE [4–6].
For weakly nonlinear CZE problems, simplified solutions
predicting the position and shape of system zones and analyte
peak can also be obtained [7]. However, for highly nonlinear
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electrophoretic transport problems in general, one has to rely
on the numerical solution of the complete nonlinear model
of electromigration to predict the spatiotemporal evolution of
concentration profiles.

For a long time, eigenmobilities were known to have only
real values, and it was thought they signify only the propaga-
tion of zones (concentration disturbances). However, Hruška
et al. [8] reported that under certain conditions, a class of elec-
trolyte solutions, which they called oscillating electrolytes, ex-
hibit complex-valued eigenmobilities. In such systems, the
solution of linearized transport equations gives a set of propa-
gating zoneswhose amplitude grows exponentially with time,
thus reflecting the onset of instability. They have experimen-
tally validated unstable electrophoretic transport for a binary
electrolyte system consisting of 0.21 mM sebacic acid and
0.323 mM imidazole, which have complex eigenmobilities.
It was observed that on the application of electric field, an
initially uniform electrolyte system develops irregular peri-
odic spatial patterns of concentration disturbanceswhose am-
plitude initially increases with time and then almost stops
growing after reaching a particular value. Later, more such
oscillating electrolyte systems were reported [9], exhibiting
different spatial oscillation patterns. These studies have es-
tablished that the existence of complex-valued eigenmobil-
ities is the absolute condition for the onset of instability
in electrophoretic transport of ions, but very little is under-
stood about the dynamics of the disturbances after instability
sets in.

Gupta and Bahga [10] presented a detailed linear stabil-
ity analysis of electrophoretic transport in a binary system
consisting of sebacic acid and imidazole. Particularly they
studied the effects of diffusion and diffusive current, not in-
cluded in previous studies. They have shown that the growth
rate of low wavenumber disturbances increases with an in-
crease in wavenumber, whereas high wavenumber distur-
bances decrease with increasing wavenumber. The physical
mechanism of instability owing to the unusually high value
ofμA,−2/μA,−1 (ratio of ionic mobilities of divalent and univa-
lent forms for sebacic acid) was also explained with the help
of stable and unstable modes of concentration disturbances
obtained from linear stability analysis.

The discovery of unstable electrophoretic transport or the
so-called oscillating electrolyte is a significant breakthrough.
Such a phenomenon was never observed for a long time in
capillary electrophoresis practices. It can be inferred that even
if the effect of such instabilities ever appeared in some ex-
periments, it is likely to have been ignored as malfunction-
ing of the detection apparatus. Hence, a better understanding
of this instability phenomenon, its onset, as well as its non-
linear dynamics is of great importance to the electrophoresis
community. Moreover, the study of this instability is impor-
tant even from a purely academic point of view because of-
ten, dynamical systems governed by entirely different physics
have similar mathematical forms and behavior. Mathemati-
cal techniques and understanding developed in one field of-
ten find application in new problems encountered in a com-
pletely different field.

The PDEs governing the transport of ionic species (con-
tinuity equations) are coupled with equations of current con-
tinuity as well as local chemical equilibrium of weak acid–
base dissociation reactions and electroneutrality. These com-
plexities have precluded the study of such systems analyt-
ically. In the present work, we propose a simple analytical
model of an unstable electrophoretic system that mimics the
behavior of the actual system for small as well as large os-
cillations. The model reduces the problem to a set of PDEs
for species transport where electromigration fluxes are mod-
eled as polynomial functions of local acid and base concen-
trations, bypassing the need to solve the other equations si-
multaneously.We have shown that these simplified equations
produce similar behavior as the actual system, even in the
nonlinear regime. The objective is to understand the funda-
mental difference in the transport equations that exist in the
case of an oscillating electrolyte system responsible for its
anomalous behavior and to explain the oscillation patterns,
particularly in the nonlinear regime through development of
a “toy” model.

Here, we present a simplified model for unstable elec-
trophoretic transport in a binary electrolyte system of sebacic
acid and imidazole and validate the model with nonlinear
simulations for small initial disturbances over a base state.
When the simulations are carried out without simplifying the
one-dimensional electromigration-diffusion equations cou-
pled with the equations for chemical equilibrium, we refer
to it as “actual system.” The results of simulation of the “ac-
tual system” are compared with that of the proposed “simpli-
fied model” in which the nonlinear electromigration fluxes
are simplified as quadratic polynomial functions of concen-
trations.

The modeling enables us to identify the distinguishing
feature of oscillating electrolytes responsible for their insta-
bility. A qualitative understanding of the instability mecha-
nism and pattern formation in the nonlinear regime that fol-
lows from this distinguishing feature is also presented.

2 Theory

2.1 Basic governing equations

The 1D mathematical model for electrophoretic transport of
weak electrolytes that we have used to simulate the “actual
system” is discussed in great detail by Hruška et al. [11] and
Bercovici et al. [12] and is briefly reviewed here. This 1D
model ignores concentration gradients in the radial direction,
which holds well particularly for electrophoretic transport
in microcapillaries if wall adsorption is negligible and any
bulk flow, if present, is of the “plug flow” type (uniform
electroosmotic flow) [11]. We have assumed absence of bulk
flow. This assumption has no effect on conclusions regarding
concentration oscillations since uniform bulk fluid motion
only translates the concentration disturbances without af-
fecting their mutual interactions. The governing equations
presented here are for an electrolyte system consisting
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of a divalent weak acid (e.g., sebacic acid) and a univalent
weak base (e.g., imidazole). These equations also form the
basis for the simplified model, which is presented later.

The transport of the ionic species in a binary electrolyte
system due to electromigration and diffusion in a microcap-
illary in absence of bulk fluid motion is given by [12]

∂CA

∂t
+ ∂

∂x
(μACAE ) = ∂2

∂x2
(DACA ) , (1)

∂CB

∂t
+ ∂

∂x
(μBCBE ) = ∂2

∂x2
(DBCB ) . (2)

Here, Ci, μi, and Di represent the total (analytical) con-
centration, the effective electrophoretic mobility, and the ef-
fective diffusivity of species family i (i = A for sebacic acid
and i = B for imidazole). E is the electric field in the axial di-
rection x. Each ionic species family consists of a number of
ionization states denoted by their respective valances. For ex-
ample, sebacic acid (i = A) has three ionization states, z =
−2, −1, 0, and imidazole (i = B) has two ionization states,
z = 0, 1. The total concentration of ith species familyCi is de-
fined as the sumof concentrations of its ionization states, that
is,Ci = ∑

z Ci,z. For any species family, μi and Di are defined
as the weighted average of the electrophoretic mobilities and
diffusivities (μi,z and Di,z) of various ionization states as

μi =
∑
z

gi,zμi,z,Di =
∑
z

gi,zDi,z, (3)

where gi,z = Ci,z/Ci and i = A, B. The electrophoretic mobil-
ity of each ionization state μi,z is a constant. The diffusivities
of charged species are calculated using the Nernst–Einstein
relation [12], Di,z = μi,zRT/zF , where R is the universal gas
constant, T is the temperature of the electrophoretic system
taken as 298 K, and F is the Faraday’s constant. For neutral
species, the diffusivities are taken to be the mean of the dif-
fusivities of the corresponding charged species.

The timescales for acid–base dissociation reactions being
significantly lower than timescales for electromigration and
molecular diffusion [1], it is reasonable to assume local chem-
ical equilibrium. Following the approach described in detail
by Bercovici et al. [12], the ionization fractions gi,z are deter-
mined by using the chemical equilibrium and electroneutral-
ity conditions. The concentration of various ionization states
are related to each other through equilibrium constants Ki,z

of the corresponding acid dissociation reaction as described
in the following:

H2A ↼⇁ H+ + HA− KA,−1 = CA,−1CH

CA,0
, (4)

HA− ↼⇁ H+ + A−2 KA,−2 = CA,−2CH

CA,−1
, (5)

B+ + H2O ↼⇁ BOH + H+ KB,1 = CB,0CH

CB,1
. (6)

The ionization fractions gi,z can now be expressed as
functions of hydronium ion concentration CH as

gA,0 = C2
H

ηA
, gA,−1 = KA,−1CH

ηA
, gA,−2 = KA,−1KA,−2

ηA
, (7)

where ηA = C2
H + KA,−1CH + KA,−1KA,−2. Similarly,

gB,0 = KB,1

KB,1 +CH
, gB,1 = CH

KB,1 +CH
. (8)

Finally, using Eqs. (7) and (8) and knowing the total con-
centrations of acid and base, the following electroneutrality
condition gives an equation to calculate the local hydronium
ion concentration.

(−gA,−1 − 2gA,−2)CA + gB,1CB +CH − Kw

CH
= 0, (9)

where Kw is the ionic product of water and (Kw/CH) is the hy-
droxyl ion concentration. Once hydronium ion concentration
is obtained using Eq. (9), the ionization fractions (gi,z) can be
calculated using Eqs. (7) and (8).

The electric field is governed by the conservation of total
current (electromigration and diffusion currents). For a con-
stant cross-section area channel, this leads to

E = 1
σ
( j + ∂S

∂x
), (10)

where j denotes the current density (current per unit cross-
section area), σ and − ∂S

∂x are the electrolyte conductivity and
diffusion current, respectively, and are given by

σ = F
[
(−gA,−1μA,−1 − 2gA,−2μA,−2)CA + gB,1μB,1CB

+μHCH − μOH
Kw

CH

]
, (11)

∂S
∂x

= F
∂

∂x

[
(−gA,−1DA,−1 − 2gA,−2DA,−2)CA

+gB,1DB,1CB + DHCH − DOH
Kw

CH

]
. (12)

Here, the mobilities and diffusivities of hydronium and
hydroxyl ions are indicated by usual symbols with subscripts
H and OH, respectively.

2.2 Stable and unstable system

The unstable binary electrolyte system (also known as os-
cillating electrolyte system [8]) that was studied consisted of
sebacic acid (μA,−1 = −20.7× 10−9 m2/Vs, μA,−2 = −44.9×
10−9 m2/Vs, pKA,−1 = 4.53, pKA,−2 = 5.38) and imidazole
(μB,−1 = 52.0× 10−9 m2/Vs, pKB,0 = 7.15).

For comparison, we have also considered a hypothetical
stable system (we call it “nonoscillating” system) for which all
other constants were taken the same as that for the oscillating
system except μA,−2, which was taken to be 2μA,−1.

© 2022 Wiley-VCH GmbH www.electrophoresis-journal.com
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2.3 Simplified model

The effective mobilities μA and μB, and conductivity σ de-
pend on ionization fractions gi,z, which ultimately depend
on the total concentration of both species (CA and CB) and
on electrophoretic mobilities of charged species, which are
treated as constants. Therefore, the quantities μACA/σ and
μBCB/σ are both functions of CA and CB only. However, con-
sidering the actual model (Section 2.1), it is nearly impossi-
ble to express those quantities explicitly in terms of CA and
CB only. Particularly because the dependence of the ioniza-
tion fractions gi,z on CA and CB is through hydronium ion
concentration CH , which is obtained by solving the algebraic
equation (Eq. 9). The nonlinear equation has multiple roots
from which the one representing physically realistic CH is
chosen.

We have considered a simplifiedmodel of electrophoretic
transport where the quantities μACA/σ and μBCB/σ are both
some known functions of CA and CB only given by analytical
expressions discussed later. Also, in the simplifiedmodel, dif-
fusion current was neglected, and a constant current source
was assumed. Moreover, considering that the effective diffu-
sivities vary little with a change in ionization fractions, they
have been treated as constants in the simplified model with
values taken as corresponding effective diffusivities at the
base state. With these considerations, the governing equation
can be cast into the following form:

∂CA

∂t
+ j

∂

∂x
[φA (CA,CB )] = D̄A

∂2CA

∂x2
, (13)

∂CB

∂t
+ j

∂

∂x
[φB (CA,CB )] = D̄B

∂2CB

∂x2
, (14)

where j,D̄A, and D̄B are constants and φA = μACA/σ and
φB = μBCB/σ are both some functions of CA and CB, noting
that in the actual model, no explicit expressions can be ob-
tained for these functions and their values can only be calcu-
lated numerically. The product of φi and the current density j
gives the corresponding electromigration flux (μiCiE). Since
j is a constant throughout the domain, we treated φi as the
flux, and in the subsequent discussion, the terms “flux” or
“flux function” refers to the quantity φi = μiCi/σ .

2.3.1 Modeled flux functions

For the actual system, the flux functionsφA andφB in Eqs. (13)
and (14) have to be calculated by simultaneously solving equa-
tions describing acid–base dissociation equilibrium and elec-
troneutrality (Eqs. 7–9). These involve algebraic equations of
very high degrees and are the main source of complexity in
solving the electrophoretic transport equations analytically.
However, on inspecting the final effect of those equations on
the values of φA and φB, we found that they are quite simple
and “well behaved” (Fig. 1A and C), resembling a family of
conic sections at least in the range of CA and CB where the
final solution is expected to lie for the problems we studied

(as per previous studies [8,13]). This motivated us to bypass
the complexities of solving the equations for chemical equi-
librium and electroneutrality and model the flux functions as
polynomial functions of variables CA and CB. The constant
value contours of φA and φB being curvilinear, the simplest
choice was a general quadratic polynomial function. Table 1
shows the details of the modeled flux functions used, which
are of the general form

φi (CA,CB ) = aiCA
2 + biCB

2 + ciCACB + diCA + eiCB + fi,

i = A,B. (15)

The coefficients of the model function were so chosen
that the value of the flux function, its first derivatives with re-
spect to concentrations of acid and bases as well as the shape
of the contour matches with those of the actual system, par-
ticularly near the base state, which was CA = 0.21 mM and
CB = 0.323 mM in our study. Figure 1B and D shows the
contours of the modeled flux functions for oscillating and
nonoscillating systems, respectively.

2.3.2 Geometric interpretation

A striking difference between the nature of contours for the
oscillating and the nonoscillating system (Fig. 1) is the incli-
nation of the conic axis, which is also reflected in the mod-
eled flux function coefficients. In Table 1, we see that different
coefficients of flux functions in the oscillating system differ
from the corresponding coefficients of the nonoscillating sys-
temdifferently. For the coefficients di, ei, and fi, the difference
is only of the order of 0.01, while for the coefficients ai, bi, and
ci, it is in the order of 0.1–1. This is the result of a fundamental
difference between the two systems in the form of inclination
of the conic axis of the flux contours of acid and base. This dif-
ference in the nature of the contours causes instability, which
results from the difference in the mobility ratio μA,−2/μA,−1
in the two systems. The angle between the axis of conics rep-
resenting constant flux contours of the acid and that for the
base can be calculated from the coefficients and is given by
the following expression:

1
2
tan−1

(
cA

aA − bA

)
− 1
2
tan−1

(
cB

aB − bB

)

=
{
0.002 rad, for the oscillating system.

−0.017 rad, for the nonoscillating system.
(16)

A positive value in the case of the oscillating system
means that the axis of conics representing constant φA

contours is inclined more toward the ordinate (CB axis) than
the axis of conics representing constant φB contours, unlike
the case of the nonoscillating system. We suppose that this
peculiarity arises in the case of the oscillating system (having
high μA,−2/μA,−1) because the effective mobility of the acid
is heavily dependent on the concentration of the base. In this
case, the mobility of univalent and divalent forms of acid
differs greatly, and the ionization fractions of these two states
are related to the base concentration through acid–base

© 2022 Wiley-VCH GmbH www.electrophoresis-journal.com
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Figure 1. Electrophoretic

fluxes for binary electrolyte

systems at different concen-

trations of acid and base. The

flux of ith species family is

defined as φi = μiCi/σ , where

μi and Ci are its effective

electrophoretic mobility and

total concentration, respec-

tively, and σ is the electrolyte

conductivity. The fluxes for

(A) the oscillating and (C)

the nonoscillating system,

respectively, are calculated

numerically by solving the

equations for chemical equi-

librium and electroneutrality

for varying concentrations of

acid and base. (B and D) The

contours of modeled fluxes

(the fluxes being simplified

as polynomial functions

of concentrations) for the

corresponding actual fluxes.

Table 1. Coefficients of the modeled flux functions for different cases

Type of system Flux function Coefficients in the modeled flux function, φi (CA,CB ) = aiCA
2 + biCB

2 + ciCACB + diCA + eiCB + fi

ai ( 10
−5m6

mol A s ) bi ( 10
−5m6

mol A s ) ci ( 10
−5m6

mol A s ) di ( 10
−5m3

As ) ei ( 10
−5m3

As ) fi ( 10
−5mol
As )

Oscillating φA 0.5883 0.5080 –1.1639 0.1122 –0.0980 –0.2358
φB –2.1702 –1.8927 4.3147 –0.3768 0.3306 0.5444

Nonoscillating φA 0.8575 0.7664 –1.7151 0.1356 –0.1212 –0.2270
φB –1.9554 –1.6229 3.770 –0.3560 0.3065 0.5632

dissociation reactions. This dependence of effective mo-
bility of acid on the base concentration is lower for the
nonoscillating system having a smaller value of mobility
ratio μA,−2/μA,−1.

To elucidate this insight, we have constructed a further
reduced model where the fluxes of acid and base in a binary
system are represented by functions of similar nature and
magnitude but differing slightly by the inclination of the
axes of the conics. This model is explained in the Supporting
Information. In this simplistic model, the stable and unsta-

ble systems differ only by the value of a single parameter that
depends on the relative inclination of the conics. It captures
most of the distinguishing characteristics of oscillating
electrolytes. When the inclination is positive, it behaves
like an oscillating electrolyte showing unstable behavior
for a certain range of base concentration lying inside the
neutral stability curve as seen in oscillating electrolytes [10].
In such unstable systems, a small initial disturbance in
the initial uniform concentration leads to large amplitude
oscillation patterns in the concentration profile after a certain

© 2022 Wiley-VCH GmbH www.electrophoresis-journal.com
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Figure 2. (A) Schematic illustrating the problem being simulated.

A channel of length 1 cm filled with 0.21 mM sebacic acid and

0.323 mM imidazole (with small disturbances superimposed) is

subjected to a constant current source of 287 A/m2, the direction

of current being toward the right-hand side. (B) Initial concentra-

tion profile of sebacic acid. The simulations were carried out for

two cases having different initial imidazole concentration profiles,

as shown in (C) and (D). The concentrations at the boundaries

were assumed to be constants and equal to the initial concentra-

tions.

time. When the inclination is negative, the electrophoretic
transport of ions is found to be stable for all base state
concentrations.

The essence of thesemodels is that they identify themain
differentiating characteristics, that is, the peculiar nature of
electromigration flux in oscillating systems that leads to their
instability. In these models, the stable and unstable systems
are clearly differentiated by flux functions that are similar
in magnitude but differ slightly in nature in the form of in-
clinations of the conics representing constant flux contours.
The mechanism of instability in oscillating electrolyte sys-
tems arising out of this peculiar nature is discussed in Sec-
tion 3.4.

3 Numerical simulations

We performed a series of numerical simulations in order to
test the model. Simulations were carried out for an unstable
system with different initial disturbances imposed over uni-
form concentration profiles. The results were compared with
simulations of the simplified model system where electromi-
gration flux was approximated using analytical expressions.
Further, a stable system was also investigated for comparison
with previously published results [13] and validation of the
numerical scheme being used.

3.1 Simulation of the actual oscillating electrolyte

system

Figure 2 gives the details of the simulation conditions for
the oscillating electrolyte system. A channel of length L =

1 cm is filled with an electrolyte system composed of sebacic
acid and imidazole. The initial sebacic acid concentration was
0.21mM throughout the channel (Fig. 2B). The base state im-
idazole concentration was 0.323 mMwith small disturbances
added to the base state. Two kinds of initial disturbances in
imidazole concentration were studied: (i) an increase of con-
centration by 0.001 mM for a 0.2 mm segment along the
channel length at the location x= L/2 (Fig. 2C); (ii) a random
disturbance of amplitude 0.001mM (Fig. 2D). A constant cur-
rent source of magnitude 287 A/m2 was applied. This corre-
sponds to an initial uniform electric field of nearly 1000 V/cm.
The concentrations at the boundaries x = 0 and x = L were
assumed to be constants and equal to the initial concentra-
tions.

The governing equations for the actual system (Sec-
tion 2.1) were solved numerically on a uniformgrid of 2000 el-
ements (a grid spacing of 5 μm). We have used second-order
central differencing for discretizing the spatial derivatives ap-
pearing in Eqs. (1) and (2). Runge–Kutta–Fehlberg method
was used for time-integration, which enabled faster compu-
tation without compromising on accuracy by using adaptive
time step. In our simulations, the current density beingmod-
erate (of order 100A/m2) and the fine grid being used, numer-
ical oscillation was avoided. This was also ensured through
grid independence tests. The sequence of operations per-
formed for obtaining the numerical solutions for the actual
system can be summarized as follows: Using the conditions
of local electroneutrality and chemical equilibrium (Eqs. 7–
9), hydronium ion concentration and ionization fractions for
all species at all grid points are obtained [12]. With ioniza-
tion fractions known, the effective mobility and diffusivity of
all species, conductivity and diffusion current are calculated
at all locations (Eqs. 3, 11, and 12). Then the electric field is
calculated using Eq. (10). The spatial derivatives in transport
equations (Eqs. 1 and 2) are calculated using central differ-
ence scheme. The governing equations are time-integrated
using the Runge–Kutta integrator. If the error norm is higher
than the predetermined tolerance, the time step is reduced,
and this step is repeated until the norm reduces to an accept-
able value. If the norm is significantly small compared to the
tolerance, the next time step size is increased. The concentra-
tions are updated, and the process from the start is repeated
until the end time is reached.

The imidazole concentration profiles after 0, 3, 6, 9, 12,
and 15 s after the passage of current in the oscillating sys-
tems with different initial disturbances are shown in Fig. 3A
and B (actual system). The initial pulse signal (Fig. 3A)
in the imidazole centration profile breaks into two zigzag
patterns of much higher amplitude after 3 s. At 6 s, the
imidazole concentration consists of two plateaus with a spike
in between them. The plateau on the left side of the spike
has a concentration higher than the base state concentration,
while that on the right has a lower concentration than the
base state. In later times, the plateaus gradually migrate
toward the channel ends while growing in height, and the
central spike starts diffusing. For random initial disturbance
(Fig. 3B), the amplitude grows, and wavenumber decreases

© 2022 Wiley-VCH GmbH www.electrophoresis-journal.com
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Figure 3. Results of simulation. (A andB) Imidazole concentration profiles after 0, 3, 6, 9, 12, and 15 s of the passage of current (frombottom

to top) for an unstable (oscillating) system composed of sebacic acid and imidazole. The concentration profiles are displayed at an offset

of 0.3 mM. The applied constant current source was of magnitude 287 A/m2, the current being toward the right-hand side. For the “actual

system,” the usual equations describing electrophoretic transport, as discussed in Section 2.1, were solved without any simplification.

For the “simplified model” simulations, fluxes were approximated by using polynomial functions of acid and base concentrations as

described in Table 1. The initial sebacic acid concentration was 0.21 mM throughout, and the initial imidazole concentration profiles

were as follows: (A) a pulse signal of height 0.001 mM and width 0.2 mm at the center of the channel superimposed over a uniform

concentration of 0.323 mM; (B) a random disturbance of amplitude 0.001 mM superimposed over a uniform concentration of 0.323 mM.

(C) Results of simulation for a stable system. The conditions were the same as that for (A) except for the mobility of the divalent form of

acid taken as twice that for the univalent form, and the magnitude of current density was 279 A/m2. The concentration profiles of the base

and the acid are shown 15 s after the passage of current. The results of the actual simulation match with published results of simulation

under similar conditions [13], which also validates the numerical scheme used. The results show that the models exhibit almost similar

dynamics as the actual stable and the unstable system in the nonlinear regime.

with time which results in the formation of oscillation pat-
terns throughout the channel length, having an amplitude of
order much higher than the initial disturbance. The nature
of these oscillation patterns is discussed in more detail later
in Section 3.4. In both the cases (Fig. 3A and B), a small
initial disturbance leads to large features—the defining
characteristic of an unstable system in general.

3.2 Simulation of the simplified oscillating

electrolyte model

Similar simulations, as discussed in Section 3.1, were then
carried out with the simplified model. In this case, the only
equations to be solved are the transport Eqs. (13) and (14)
where the functions φA and φB were obtained using ana-
lytical expressions explained in Table 1. The effective diffu-
sivities were taken as constants, and values were taken at
CA = 0.21mM andCB = 0.323mM, which was the base state
in our simulations. The choice of grid size, spatial discretiza-
tion, and time integration scheme remained the same as
before. However, the modeling greatly simplifies the calcu-
lations. The calculation of hydronium ion concentration, ef-
fective mobilities, electrolyte conductivity, etc., for calculating
electromigration flux described earlier are now replaced by
evaluating only φA and φB from their approximated analyti-
cal expressions. On comparing the imidazole concentration
profiles (Fig. 3A and B) predicted by the model with that pre-
dicted by the actual system, we find a fair degree of qualitative
and quantitative agreement. In the case of pulse disturbance
(Fig. 3A), all the distinguishing features observed in an actual
system like a central spike, plateaus migrating toward chan-

nel ends are also reflected in the model simulations. How-
ever, in the case of the model, the central spike diffuses away
at a slightly slower rate. The oscillation patterns predicted in
the case of random initial disturbance (Fig. 3B) by the model
also closely resemble those predicted by the actual system.
Particularly, the model predicts the amplitude and as well as
the approximate number of waves correctly. Thus, our simpli-
fied model mimics the nonlinear behavior of the actual oscil-
lating electrolyte even after bringing in much simplification.

3.3 Simulation of the stable system and its

simplified model

Next, we investigated similar modeling for the stable or
nonoscillating system. As discussed earlier, we have seen that
the hypothetical nonoscillating system had a difference in the
nature of the flux contours (Fig. 1). This difference was also
captured in the simplified modeling of the flux functions in
the form of differences in coefficients. Further, in order to
see the differences in nonlinear behavior with that of the os-
cillating system as well as assess the ability of the simplified
model to emulate these differences, we also simulated the
actual nonoscillating system and compared the results with
the simulation results of its simplified model. The simula-
tion conditions, particularly the initial concentration profiles
of acid and base and boundary conditions, were the same as
those for Fig. 3A. However, in this case, the constant current
source was of magnitude 279 A/m2, which corresponds to an
applied electric field of 1000 kV/cm. This small difference in
current, compared to the previous simulations of the oscil-
lating system for the same initial electric field, is due to the

© 2022 Wiley-VCH GmbH www.electrophoresis-journal.com
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difference in the value of μA,−2 and hence the electrolyte con-
ductivity σ . Also, it should be noted that the electric field re-
mains almost uniform and steady since the small initial dis-
turbances in the stable system decay with time.

The simplified model shows both qualitatively as well as
quantitatively similar behavior as the actual system, as shown
in Fig. 3C, which shows the concentration profiles 15 s after
the passage of current. In this case, the initial disturbance
in the imidazole concentration profile in the form of a pulse
broadens with time, assuming a Gaussian profile while mi-
grating toward the right end of the channel. There is also a
much smaller peak that migrates in the opposite direction.
The acid concentration profile, which was initially uniform,
consists of two peaks migrating toward the opposite direc-
tions from the center whose shapes are the mirror image
of each other about the base state concentration level. These
characteristics are almost accurately captured by the model.
Moreover, the results of the actual simulation also match
exactly with published results of simulation obtained using
commercially available software for similar conditions [13].
The dynamics of the stable system is in sharp contrast with
the oscillating system, though the only difference between the
two systems is in the ionicmobility of the divalent form of the
acid (μA,−2 for the unstable system and μA,−2 for the stable
system).

3.4 Mechanism of instability in binary oscillating

electrolyte system

Figure 4 illustrates the mechanism of instability seen in a bi-
nary oscillating electrolyte system. Amagnified view of the os-
cillation patterns is shown in Fig. 4A, and the corresponding
phase portrait in CA–CB coordinates is given in Fig. 4B. The
oscillation pattern consists of repeated discontinuities where
spikes in the concentration of both species are observed. In
between the discontinuities, the variation in concentration is
smooth. Figure 4C and D shows a schematic representation
of the observed oscillation pattern (assumed to be periodic for
simplicity) and the corresponding phase portrait. In Fig. 4B
and D, a pair of constant φA and φB contours close to phase
portrait (for the smooth region) are also shown for reference.
It can be inferred from the phase portrait that the variations in
concentration along the direction of transport for the smooth
region follow a path that is close to constant flux contours of
the acid and the base, which are like conics with a slight dif-
ference in inclination of axes. Certainly, these paths coincide
with neither a constant φA nor a constant φB contour but lie
somewhere halfway between some constant φA and φB con-
tour. The relative orientation of the constant flux contours in
Fig. 4B is so because in the case of an oscillating electrolyte
system, the axis of constant flux contours of the acid is in-
clinedmore toward theCB axis as compared to the axis of con-
stant flux contours of the base. This peculiarity is seen only in
the case of oscillating electrolytes as we have discussed pre-
viously in Section 2.3.2. (The case of nonoscillating system is
also shown in the Supporting Information.)

Figure 4. Mechanism of instability. (A) Concentration profiles of

the acid and the base for the oscillating system (Fig. 3B, actual

system) after 6 s of the passage of current for the segment of

capillary between x = 0.5mm to x = 1mm. (B) Phase portrait ob-

tained by plotting CB against CA at all grid points within the re-

gion considered in (A). Constant flux contours of the acid and

the base, near the phase portrait, are also shown for reference.

(C) Schematic representation of oscillation pattern observed in

numerical simulations for oscillating electrolytes. For simplicity,

we have assumed a regular periodic profile. The concentration

profiles of both the acid and base consist of repeated discontinu-

ities where spikes in concentration occur. These discontinuities

are shock interfaces and are shown as dashed vertical lines in

both (A) and (C). (D) Schematic representation of phase portrait

corresponding to ideal oscillation pattern shown in (C). The vari-

ations in concentration along the direction of transport for the

smooth region follows a path that is close to constant flux con-

tours of the acid and the base. “1” and “2” are the compositions

(states) at just the left-hand side and the right-hand side of a dis-

continuity at locations x1 and x2 (shown in (C)). P and Q are com-

positions at locations xP and xQ. The relative orientation of the

constant flux contours with respect to the phase portrait leads us

to the conclusion that |(φA )1| < |(φA )2| and (φB )1 > (φB )2. This flux

imbalance (depicted in (C)) suggests the role of electromigration

flux in increasing the spike in concentration at the discontinuities.

Compositions at states 1 and 2 in Fig. 4C and D denote
concentrations on the left-hand side and the right-hand side
of the discontinuity, respectively. In Fig. 4D, from the relative
orientation of the constant flux contours and knowing that
flux magnitude for the constant flux contours increases as we
move away from the origin (Fig. 1), we can certainly say that
|(φA )1| < |(φA )2| and (φB )1 > (φB )2. This flux imbalance on
the two sides of the discontinuities is shown schematically in
Fig. 4C. As a result of this flux imbalance, there is an accumu-
lation of both species in the region of discontinuity. Hence,
the spike increases with time, leading to the observed oscilla-
tion patterns. The above argument holds good even for large
oscillation patterns of a similar nature. The electromigration
flux always tends to increase the spikes (at discontinuities),

© 2022 Wiley-VCH GmbH www.electrophoresis-journal.com
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which are ultimately limited by diffusion. Hence, the oscil-
lation patterns observed in simulations have concentration
profiles where local concentration may fall well outside the
region with imaginary eigenvalues, that is, unstable composi-
tions predicted by linear stability analysis [8,10]. Our analysis
shows that oscillation patterns of the type shown in Fig. 4A
but of any size, infinitesimal or large, always tend to increase
in amplitude due to electromigration flux in oscillating sys-
tems. On the other hand, if we start with a similar oscillation
pattern in a stable system, using a similar argument, we see
that electromigration fluxes tend to diffuse the spikes, which
explains their stability (see Supporting Information).

4 Concluding remarks

Our simulations prove that the approximate model where the
electrophoretic fluxes are modeled as quadratic polynomial
functions of concentrations can emulate the behavior of an
unstable or oscillating binary electrolyte system in the non-
linear regime. Themodel enables us to eliminate complicated
equations involving chemical equilibrium and electroneutral-
ity coupled to the transport equations. The model helps us to
clearly identify the distinguishing feature of electromigration
flux in binary oscillating electrolyte systems. It is expected
that the simplified model will facilitate analytical studies of
the nonlinear dynamics of unstable electrophoretic transport.
Besides, we obtained a seemingly simple set of two PDEs ex-
hibiting interesting nonlinear dynamics. This could spark the
interest of mathematicians to explore its rich dynamics as
seen in other classes of PDEs like reaction-diffusion mod-
els, which find applications in a wide variety of phenom-
ena like pattern formation in Belousov–Zhabotinsky reaction,
skin pigmentation, spread of epidemic, and growth of tumor.

Moreover, the instability mechanism due to the pecu-
liar nature of electromigration flux in oscillating electrolytes,
which unfolded while modeling, answers many unanswered
questions. It gives a qualitative understanding of the shape
of large oscillation patterns. More importantly, it helps us un-
derstand the growth of oscillation patterns in the nonlinear

regime, particularly, when the local concentration at the peaks
falls outside the unstable region predicted by linear stability
studies.

The authors have declared no conflict of interest.
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